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1.0 ABSTRACT

This report describes an attempt to solve the two-dimensional problem
of a body performing steady translation near a free surface. The aim was to
solve the problem in its full generality without any linearizations or small-
perturbation assumptions. The method of solution is based on iterative use
of the well-known surface singularity technique and thus, if successful, the
method could be generalized to three dimensions. At each stage of the pro-
cedure the free-surface shape is assumed known and the singularity strength
adjusted to satisfy the constant-pressure boundary condition. In general,
the normal velocity on the free surface is not zero. The free-surface shape
is then altered by some algorithm, and the procedure is iterated to obtain
zero normal velocity. The key to this approach is the iterative algorithm.
Various algorithms were tested by applying them to the problem of a submerged
point vortex and comparing the free-surface shape obtained in convergent
cases with published results. After considerable experimentation, a procedure
was devised that gives very good results as long as the wave heights are not
too large. For large wave heights, convergence could not be obtained, and
some as yet undiscovered change in the method is needed.
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4.0 PRINCIPAL NOTATION

respectively, the normal and tangential components of velocity
at the i-th control point due to unit vorticity strength on
the j-th element

acceleration of gravity

depth of submergence of a point vortex

strength of the point vortex. Equals T/2x

surface of a two-dimensional submerged body

freestream velocity

velocity along the free surface

respectively, the normal and tangential components of velocity at
the i-th control point

respectively, the normal and tangential components of the velocity
induced by a point vortex and its image (if any) at the i-th
control point

respectively, horizontal and vertical coordinates

coordinates of points that define the free-surface shape. Endpoint
of a surface element.

location of upstream termination of the flat
location of downstream termination of the free surface

location of downstream termination of the flat and the beginning of
the normal portion of the free surface

slope angle of the i-th surface element
spacing of points along the free surface. Equals xj+] —-xJ

when used in front of a quantity, denotes a small change in that
quantity

circulation due to a point vortex
vertical location of the free surface
vorticity strength at center of the j-th surface element

relaxation factor to aid convergence of the iterative process,
equation (13)




5.0 INTRODUCTION

The problem of interest is that of the steady translation of a body in the
presence of a free surface. The fluid below the free surface is inviscid and
incompressible, and the flow is irrotational so that it is a potential flow
governed by Laplace's equation. The fluid pressure is constant all over the
free surface. In three-dimensions this problem finds its chief application
in the calculation of wave resistance both for surface ships (the surface-
piercing case) and for undersea vehicles (the submerged case). In two dimen-
sions the flow about hydrofoils is the chief application. Although the problem
of main practical interest is the three-dimensional one, because of its very
formidable nature, the present effort has been devoted to the two-dimensional
problem, where the only solution techniques considered are those with direct
three-dimensional analogies.

The intention is to attempt to solve this problem in its full generality,
i.e. without any assumptions of small perturbations in regard to either the
body or the free surface. This is a nonlinear problem because the location of
the free surface is unknown and must be solved for as part of the problem. The
method of solution to be used is the surface-singularity approach (reference 1),
which utilizes singularity distributions — source, dipole, vorticity — on the
surface of all bodies and on the true location of the free surface. This is
in contrast to small-perturbation approaches that use singularity distributions
interior to the bodies and/or on the undisturbed location of the free surface.
In the surface singularity approach, the strengths of these singularities are
determined from the boundary conditions in terms of integral equations, which
are approximated by matrix equations for numerical implementation. The sinqu-
larities used are of the simple "Rankine type," which are appropriate for
problems without a free surface. For example, the point source potential is
log(1/r), where r is distance between the source and the point where the
potential is evaluated.
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6.0 GENERAL DESCRIPTION OF THE FLOW PROBLEM

It is supposed that a body is translating parallel to a free surface
with uniform velocity U. By superimposing the negative of the body's trans-
lational velocity on the entire velocity field, the problem can be stated as
shown in figure 1. The body surface S, which may be multiply-connected,
is stationary in the presence of a uniform onset flow of magnitude U parallel
to the positive x-axis. Above the body at a location y = n(x) that must be
determined is the free surface, which is a streamline of the flow along which
the pressure is constant. The flow field for y < n(x) 1is a potential flow,
which has zero normal velocity on S and approaches the uniform freestream
for x » -= or y » -=, (For definiteness, the infinite-depth case is con-
sidered, but the finite-depth case could be handled by use of a single image
of the body and free surface.) The undisturbed position of the free surface
is y=n=0.

If the tangential velocity at any point on the free surf-~e is denoted V,
the constant-pressure condition can be written

v2 + 2gn = U2 )

or
V= VU© - 290 (2)

where g 1is the acceleration of gravity.

To solve this problem by a surface singularity approach, the body surface
S 1is covered with a source density distribution. (There is also vorticity to
produce circulation about S 1in lifting cases.) The free surface is covered
with either a source or a vorticity distribution. The two distributions, i.e.
on the body and the free surface, are determined from the boundary conditions
on the body and free surface. However, there are three boundary conditions,
i.e. zero normal velocity on S and on y = n(x) and constant pressure on
y = n(x). Thus, two singularity distributions are insufficient, and an
additional "degree of freedom" is necessary. This is the location y = n(x),
which is determined from the boundary conditions along with the source and
vorticity distributions.

U L TN NS PN YRS A 3= 5t



The surface singularity method requires that the locations of all boundaries
be known. The free-surface problem must be attacked by iteration. At any
stage the location of the free surface is assumed and a flow calculation is
performed. Presumably one (or both) of the boundary conditions on the free
surface are not satisfied. Based on some algorithm the location of the free
surface is then changed, and the calculation is repeated. The above process
is iterated until convergence (in some sense) is obtained. The algorithm for
altering the free-surface location is highly nonunique. Many possibilities can
be postulated and probably most of them lead to a divergent process. The main
task in applying the surface singularity method to the free-surface problem is
selection of a convergent algorithm. This is somewhat similar to the classic
inverse problem, where the velocity distribution on a surface is specified and
the surface shape must be computed. However, this latter problem turns out
to be much simpler. Algorithms that work for it fail for the free-surface
problem.

Basically the calculation can proceed in one of two general ways. At each
stage it can satisfy the condition of zero normal velocity on S and on y = n(x)
and then iterate to obtain constant pressure on y = n(x). Alternatively, at
each stage it can satisfy the condition of zero normal velocity on S and the
condition of constant pressure on y = n(x) and then iterate to obtain zero
normal velocity on y = n(x). While both possibilities must be kept in mind,
it is the second one that has been used successfully in inverse problems, and
it has been given principal attention. Similarly either a source or a vorticity
distribution may be used on the free surface. In the present work the use of a
vortex distribution on the free surface has proven more effective. This is to
be expected if the calculation first fixes tangential velocity as in the second
alternative above, because of the powerful local effect of vorticity on local
tangential velocity. However, the first alternative above was implemented using
sources which have a powerful local effect on normal velocity, without success.

Strictly speaking, it is not sufficient to consider only the free surface
and the body as boundaries of the problem. The domain should be closed by the
addition of three more boundaries: (1) an x = constant boundary at a large
negative value of x on which freestream conditions (normal velocity equal to
U) are prescribed; (2) a y = constant boundary at a large negative value




of y on which zero normal velocity is prescribed; and (3) an x = constant
boundary at a large positive value of x on which a "radiation condition" of
downstream waves is applied. However, the philosophy that was followed in the
present work was to try the simpler approaches first and to add complications
only when these simpler approaches proved inadequate. Accordingly, the above
three additional boundaries were ignored in most of the work to date. This

is equivalent to the assumption that these boundaries will have weak enough
sinularity strengths to give a negligible effect in the vicinity of the body.
Almost certainly this is true for boundary (2).

Boundaries (1) and (3) together with the conditions applied on them
imply, respectively, that no waves propagate upstream and that waves do
propagate downstream. Thus, for example, if a particular calculation scheme
that ignored these boundaries did not yield a wave-like free-surface shape,
the inclusion of the downstream boundary (3) would be a possible remedy. As
will be seen in subsequent sections, the present method does not suffer from
this defect, but all forms of the method yield wave-like free surface shapes.
Accordingly, the downstream boundary (3) was never considered. On the other
hand, the present method does have a tendency for upstream waves to form under
certain conditions, and an upstream boundary (1) was tried as a remedy.
Unfortunately this attempt was not successful.

x.




7.0 THE PROTOTYPE PROBLEM

To conserve computing time during the search for a convergent iteration
algorithm, the mechanism responsible for disturbing the free surface has been
taken as a submerqged point voriex, as shown in Figure 2, rather than a lifting
body, as shown in Figure 1. Some distance from the body its velocity field
approaches that of a point vortex, so this appears to be a reasonable approxi-
mation. In any case it i= known from the literature that the shape of the free
surface due to a submerged point vortex is qualitatively similar to that due
to a submerged 1ifting body. Thus, it seems likely that any proposed iteration
algorithm for determining the free-surface shape would either converge for
both a point vortex and a lifting body or diverge for both. The saving in
computing time comes from the fact that only the free surface need be defined
by surface elements. Thus, the order of the matrices that must be formed and
solved is reduced. Another important reason for considering the point vortex
is that this case has been considered by previous investigators, notably
von Kerczek and Salvesen (references 2 and 3). Thus, solutions obtained by the
present method of this report can be compared with theirs to yield an essential
quantitative test of accuracy. However, it should be noted that the results of
references 2 and 3 have been obtained for a finite fluid depth of 9.5 feet, so
that perfect agreement with the infinite-depth results of the present method
cannot be expected.

The essentials of the point vortex pmoblem are illustrated in Figure 2.
The vortex, which has a strenfth K, is located at the point x = 0, y = -h.
Here K = r/2n, where T 1is the circulation. The problem has been addressed
both with and without an image vortex of equal and opposite strength at the
point x =0, y = +h, and it was encouraging to note that the convergent
algorithms yielded exactly the same results in both cases. During most of
the work to date, an image vortex was included. A1l cases follow references 2 |
and 3 in using a freestream velocity U of 10 feet per second and a submerg- |
ence depth h of 4.5 feet. Various vortex strengths K are considered,
which lead to various wave heights. During most of the present effort only
reference 2, not reference 3, was available. Reference 2 considers only the
two vortex strengths K = +1.15 and K = -1.4. Thus most of the testing of
the present method was carried out at these values of K, which are denoted




the standard vortex strengths. After a successful algorithm had been devised
for these strengths, it was applied to cases having larger values of K and
thus larger wave heights, for which, unfortunately, it proved less successful.

During an early stage of development of the present method the free surface
was represented by a singularity distribution, source or vorticity, from Xg
to x, (Figure 2). For a given free surface shape the singularity strengths
were adjusted to satisfy one boundary condition (constant pressure or zero
normal velocity) and the free-surface shape was iteratively adjusted to satisfy
the other boundary condition (Section 6.0). In a later, more successful, form
of the method the portion of the free surface from X0 to Xy was treated as
described above, but in addition the free surface from x, to x, (Figure 2)
was represented by both source and vortex singularities, whose strengths were
adjusted to satisfy both boundary conditions. The portion of the free surface
from Xy to Xq Wwas constrained to lie along the x-axis with zero normal
velocity and a tangential velocity of U. The physical variables are U, h,
and K. The "numerical variables" are Xy» Xg XN and the element length
AX = xj+l —-xj which is used to define the free surface. In all cases pre-
sented, a constant spacing has been used, and aAx 1is a single number.

————




8.0 THE SURFACE SINGULARITY METHOD

To implement the surface singularity method of reference 1, the free
surface or its approximation is represented by a set of points (xJ, yJ) as
shown in Figure 2. During the course of iterating for the free-surface shape,
the X3 remain fixed and the y. are altered. The portion of the surface
between two successive points (xj, yj) and (xj+1, yJ+1) is a surface ele-
ment on which singularity is distributed. In the "first-order" version of the
method the surface element is a straight 1ine from (xj, yJ) to (xj+1, yj+])
on which the singularity is constant. In the more accurate "higher-order"
version (references 1 and 4) the element is a parabola and the singularity
varies Tinearly. Boundary conditions are applied at a single control point
(ij, §j) of each element, and this point is the midpoint of the element in
both versions. '

Although both source and vorticity distributions have been used on the
portion of the free surface from X0 to Xys for definiteness the method is
outlined below for the case when vorticity is used. This choice of singularity
yields the only effective procedure. Moreover, for simplicity the case when
no "flat" is employed from XM to Xo is described first. Let ¥ denote
the vorticity strength at the control point of the jth element, and let Aij
and Bij be, respectively, the normal and tangential components of velocity
at the control point (ii, 91) of the ith element due to a unit value of vor-
ticity at the control point of the jth element. Explicit formulas for these
quantities are presented in references 1 and 4 and will not be repeated here.
The only difference between the Aij and Bij for source and vorticity dis-
tributions is that the components are interchanged with one sign changed
(depending on the sign convention). Further, let vai and vai be,
respectively, the normal and tangential components at (ii’ 91) due to the
point vortex and its image (if any). Then the total normal and tangential
components of velocity at (ii’ 91) are

Vi =2oAqgmg = U sinag + Vo (3)

VT,' =231juj + U cosa + va'i (4)




where ay is the slope angle of the ith element as shown in Figure 2, and
where the summations are over all elements. The equations that must be
satisfied are

Vhi = 0 (5)

In the vorticity procedure the free-surface shape is assumed, and the yu, are
obtained as solutions of the simultaneous linear equations (6) with left sides
given by (4), i.e. the uj are determined to satisfy the constant-pressure
boundary condition. These values are then used in (3) to calculate normal
velocities, which are not, in general, equal to zero. An iterative algorithm
is then applied to alter the free-surface shape.

e T R, d R o




9.0 ITERATION ALGORITHMS

9.1 Local Algorithms

The simplest algorithm computes the change of slope anqle 8oy of each
element as

These are added to the ay to obtain new ay which in turn are used to cal-
culate new Y; successively beginning with the fixed upstream value (xo.O).
Then the entire calculation is repeated. For low-slope shapes similar to a
free surface, this algorithm converged for the classical inverse problem of
potential flow, in which the prescribed value of tangential velocity at each
(ii' 91) is independent of location, but it diverges in the present applica-
tion. Evidently the y-dependence of the prescribed velocity in equations (6)
greatly complicates the problem.

This algorithm may be called local because the local slope correction is
determined from the local deviation of the calculated results from the satis-
faction of the boundary condition. Three such algqorithms have been investi-
gated, including one based on source singularity, and all diverged.

9.2 Global Algorithms

To obtain convergence it is necessary to employ a qlobal iterative algo-
rithm which considers the effects at other elements of a change in ay and
which simultaneously computes (to first order) changes in slope angle and
vorticity strength that correct the normal velocities while maintaining the
constant prescure condition on all elements. It should be emphasized that the
final converged shape is not in any sense a small-perturbation solution. While
small-perturbation formulas are used to compute shape corrections, each itera-
tion performs a full potential-flow solution in the sense of reference 1. Thus,
the converged solution has the correct normal velocity (zero) and the correct
tangential velocity for constant-pressure. Deviations, if any, of the computed
shape from the correct shape can only be due to nonuniqueness of the basic
problem and to numerical discretization, namely the finite length of the ele-
ments and the finite locations of the XM+ Xo and Xy

13
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Basically, a change of shape of the free surface affects the local veloc-
ities in four ways:

l 1. Rotation of the local surface through a fixed velocity field.
Change of vorticity strength with fixed induced-velocity matrices.
Change of induced-velocity matrices with fixed vorticity strengths.

S w N

Effect of vertical translation on vortex velccity and on the constant
pressure boundary condition.

The local iterative algorithm accounts only for effect 1, while the global algo-
rithm below accounts for effects 1, 2, and 4. Experience indicates that effect
3 may be ignored safely if surface slopes are as low as those occurring in
surface wave problems.

When the free-surface shape is altered, first-order changes in the velocity
components (3) and (4) are

- - - e v
Vi = 2Aygoug = (Vg = Byquydsay + 5 (Vons)8Y; (8)
i |
= - v
Vpy = 2oBgouy * Vygooy + 5 (Vyri)oy; (9)
i

A simple geometric calculation

&) = 2opyba; (10)

expresses the first-order changes in vertical displacement in terms of slope
angle changes. The conditions to be satisfied are

oVpg = &V, () = = [V, (3,)]e, (12)
ay1

Using (8), (9) and (10) in (11) and (12) gives a set of linear equations for
5"3 and Gaj, the latter of which yields a new free-surface shape Yy by
means of the formula

Yy ® ¥y.q * X tan(uJ + pGuj) (13)
Yo * 0 at X = X
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where p is a "relaxation factor" used in some cases to improve convergence.

The flow calculation is then repeated for the new shape, and an iteration is
performed.

In all cases the initial approximation to the free-surface shape is the
undisturbed location of the free surface y = 0.

15
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10.0 FIRST-ORDER REPRESENTATION OF THE FREE SURFACE WITH NO FLAT

The initial form of the global algorithm fixed the upstream end of the free
surface at x = x5, y = 0 (Figure 2) and applied the above equations to the
entire free surface from Xo to  xy. Some of the results obtained for the free-
surface shape are compared with corresponding results from reference 2 in
Figures 3 and 4.

One very gratifying result is evident from these figures, namely that the
present calculations yield waves. This was not at all obvious a priori. A
monotonic shape might have been obtained. However, the one constantly occur-
ring result in applying the present method is that it always gives waves, even
in divergent cases. Moreover, the waves have approximately the correct wave
lengths.

While the results of Figures 3 and 4 are not absurd, they are clearly
unacceptable as results of a method of quantitative prediction. However,
attempts to improve the results by decreasing the point spacing ax 1led to
divergence. In fact, any change in Ax 1led to divergence. The iterations
only converge for aAx = 1, a clearly unacceptable situation that requires a
new approach.

This approach was also implemented with sources, but it diverged immediately.

A basic problem with this approach is illustrated in Figure 4, where the
solution obtained by the present method exhibits an erroneous peak at negative
values of x. This occurred in all of the badly inaccurate converged cases
like that of Figure 4 and also in the divergent cases. When this peak was
absent, relatively accurate solutions were obtained 1ike that of Figure 3. Thus
suppression of the peak at negative values of x was pursued as the means of
improving the solution. Apparently this phenomenum is related to the unique-
ness question discussed in Section 6.0. Presumably, the peak at negative values
of x represents a form of upstream wave propagation, which must be suppressed
by applying additional boundary conditions at negative values of «x.




11.0 FIRST-ORDER REPRESENTATION OF THE FREE SURFACE WITH AN INITIAL FLAT

To eliminate the peak at negative values of x and render the calcula-
tion more stable, the free surface is preceeded by an initial "flat" that is
constrained to lie along the x-axis, as described in Section 7.0. Specifically,
the portion of the free surface from x, to Xg (Figure 2) is required to lie
along y = 0, and the tangential velocity is required to equal the freestream
velocity U. The remainder oi the free surface from X0 to N is treated
as described above. On Xy < X < Xg both source density and vorticity are
used to handle the two boundary conditions, and the above iterative equations
are modified in that region to account for two singularity changes with no
change of shape. Some cases that diverge with a short flat can be made to con-
verge by lengthening the flat. It was found by numerical experiment that as
long as the flat has the minimum length necessary to ensure convergence, further
increase in the length of the flat has virtually no effect on the results.
Computed results are presented for flats of sufficient length without specif-
ically listing that length. Usually Xy = -20 is sufficient. Moreover,
unless otherwise stated the end of the flat X0 is at -10.

Calculated results for the two standard vortex strengths are shown in
Figures 5 and 6 for a very short representation of the free surface (termination
on the figure) and a unit point spacing. The wave heights agree rather well with
those of reference 2, but the wave lengths are somewhat too long. Unfortunately,
this solution is sensitive to the magnitude of the numerical variables. Fig-
ure 7 shows free-surface shapes calculated by the present method for three
values of the downstream termination point XN A11 three calculated shapes
have the same wave length (which is somewhat in error) and the same locations
of peaks and zeros. However, the wave height is evidently dependent on the
downstream termination point.

An effort to increase the accuracy of the calculated solution by reducing
the point spacing to Ax = 0.5 is shown in Figure 8. The wave height is
significantly overpredicted for the case with the flat extending to X = -10,
and again an erroneous "peak" at negative values of x 1is evident. Moving the
flat termination to Xg = =5 removes the bump and reduces the wave height, but
the wave height is still incorrect and the wave length is still in error. Thus

17
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the suppression of upstream waves is insufficient by itself. A numerical
inaccuracy remains.




12.0 A NONUNIQUENESS DUE TO NUMERICAL INACCURACY

It turns out that much of the above-described sensitivity of the results
to the numerical parameters is due to a nonuniqueness arising from insufficient
numerical precision in the first-order formulation of the surface-singularity
technique. This can be illustrated by a sample calculation. An original shape
was selected that is flat from x = -30 to x = -10 and that has a wave-like
shape for x > -10. It is shown as a solid curve in Figure 9. Flow about this
shape in the presence of a uniform onset flow parallel to the x-axis was cal-
culated using a surface source distribution and a point spacing ax = 1. The
resulting surface velocity distribution was input into a program using surface
vorticity that was required to reproduce the surface velocity. If the problem
had a unique solution, the resulting normal velocity distribution should be
vanishingly small. Instead it was a periodic function with maximum value equal
to 5% of freestream velocity. When the shape was allowed to alter itself iter-
atively to produce both the prescribed tangential velocity and zero normal
velocity, shapes 1ike those shown in Figure 9 were obtained for different down-
stream terminations. These differ from the original curve by amounts similar
to those of the preceeding figure. It is not a question of the finite length
of the shape, because termination at x > 50 give essentially the same results
as that for x = 50 (Figure 9).

If the above procedure is carried out with the same point spacing using the
higher-order version of the surface singularity technique (references 1 and 4),
the magnitude of the normal velocity that expresses the degree of nonuniqueness
is reduced from 5% of freestream velocity to 0.5%. Thus, with some suitable
upstream point fixed, the iterated shape would be only about a tenth as far
from the original shape as the iterated shapes of Figure 9. This would be quite
acceéptable accuracy, and it implies that use of the higher-order version is one
key to quantitative accuracy of the present method.
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13.0 THE HIGHER-ORDER PROCEDURE

When the higher-order surface singularity procedure of reference 4 is
incorporated into the above-described global iteration procedure with initial
flat, the result is a method that appears to be quite successful in predicting
free-surface shapes for the two standard vortex strengths K = +1.15 and
K=-1.4, Moreover, it appears to be stable with respect to the numerical
parameters X2 X and Xy Calculated results obtained with Ax = 1 are
shown in Figures 10 and 11, respectively. The agreement of the wave shapes
obtained by the present method with those from reference 2, is essentially
exact when due account is taken of the fact that the shapes from reference 2
have been calculated for a finite depth by a numerical procedure. The curve
of the present method in Figure 10 represents three graphically indistinguish-
able solutions obtained for the same three locations of downstream termination
that are shown in Figure 7. Figure 11 shows two barely distinguishable results
obtained for two downstream terminations. The calculation of Figure 10 was
repeated with the flat extending to Xq = -6 instead of Xq = -10 as in
Figure 10. The calculated free surface shape is virtually identical to that
shown in Figure 10.

To investigate the dependence of the solution on the spacing ax, the
calculation for K = +1.15 was repeated using aAx = 1.5 and aAx = 0.5. The
former gave a rather poor result with peaks 20% too low and a wave length 10%
too large. The smaller spacing produced a free-surface shape that agreed very
well with that of Figure 10 up to the negative peak at x = +25. Thereafter
there is some deviation, but that could be caused by the proximity of the down-
stream termination at x = +39. This case used 138 elements on the free surface.
A larger value of downstream termination could not be used because of limits
on the element number imposed by computer capacity. Thus it seems reasorable
to conclude that the higher-order solution is at least relatively insensitive
to the numerical parameter ax for ax < 1 and that very good solutions are
obtained with Ax = 1 for the two standard vortex strengths. Apparently,
ax = 1.5 1is too large to give an accurate solution.
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14.0 LARGER VALUES OF VORTEX STRENGTH

As stated in Section 7.0, much of the present study concentrated on the
standard vortex strengths K = +1.15 and K = -1.4 because only reference 2
was available. Finally, however, not only reference 3, but a complete set of
numerical results for all vortex strengths that had been considered was
obtained from the authors of references 2 and 3. This permitted the present
method to be tested for greater vortex strengths and greater wave heights,
for which nonlinearities in the free-surface problem are more important. Cal-
culations were performed by the present method for the following vortex strengths:

K

“l.7, =2.34 =2.7

K= +1.4, +1.7, +2.7

The strength K = +2.7 gives waves of such a height that the authors of
references 2 and 3 feel they are on the verge of breaking.

Good results were obtained for the vortex strengths K = -1.7 and K = +1.4,
The accuracy obtained and the sensitivity to the numerical parameters tested
were only slightly worse than for the standard vortex strengths. This is illus-
trated in Figure 12 for K = -1.7. The wave heights are approximately 0.40 and
0.47, respectively, for K = -1.7 and +1.4.

At K= -2.3 some nonlinear effects are evident in the numerical solution.
The free-surface wave varies from -0.48 to +0.52 after an initial peak of 0.62.
The iterative procedure of the present method is less stable for this case. It
is necessary to use a relaxation factor of o = 1/2 1in equation (13) to obtain
convergence, as opposed to the value p = 1 used for the smaller vortex
strengths. Convergence to a normal velocity equal to 0.1% of freestream velocity
is obtained in 10 iterations and the solution is relatively insensitive to the
terminations s %g and XN (Figure 2). The spacing Ax was not varied.
The accuracy obtained is not quite equal to that achieved at lower values of
K, as is illustrated in Figure 13. It can be seen that the calculated free-
surface shape erroneously rises to a value of about 0.07 immediately downstream
of the flat termination of Xg = -10. This is suggestive of upstream waves or
of a numerical problem at the flat termination.
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For K = +1.7 the present method encounters serious difficulty. The
numerical solution yields a wave that varies from -0.54 to +0.60 after an initial
peak of -0.56. As shown in Figure 14, the present method converges using a
downstream termination of XN = +39 and yields a fairly accurate free-surface
shape for one wave cycle. The second positive peak is seriously overpredicted,
and the wave length is somewhat in error. A plausible assumption would be that
the downstream termination is too near the second positive peak and that increas-
ing this parameter would lead to an improved solution. Unfortunately, every case
attempted with downstream termination increased by at least one wave length
proved to be divergent. Various values of the numerical parameters and the
relaxation factor were tried without success. It is possibly significant that
the early iterations all had sizable peaks at negative values of x, which is
suggestive of upstream waves or numerical problems at the flat termination.

When the vortex strength K = -2.7 was used the present higher-order method
diverged for all values of the numerical parameters and the relaxation factor.
The first iteration for one attempt is shown in Figure 15, where it is clear
that it has the proper wave-like character. 0ddly the first-order procedure
did converge for this case but was rather inaccurate. Both versions of the
present method yield erroneous peaks at negative values of x.

For K = 42.7 the wave shape of the numerical solution varies from +1.25
to -0.93 and the positive and negative peaks are shapes quite differently from
each other (reference 3). Convergence of the present method was not attained.
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15.0 ATTEMPTS TO IMPROVE THE CALCULATION PROCEDURE

Several attempts were made to improve the calculation procedure by elim-
inating the peaks at negative values of x. These were of two types: alter-
nate calculation procedures near the flat termination and an upstream boundary
condition to suppress upstream waves.

Since the source strength on the free surface changes abruptly from a fin-
ite value on the flat to zero on the normal portion of the free surface, it was
hoped that a smoother solution could be obtained by removing the sources and

the normal velocity boundary condition. The resulting procedure diverged even
for K = +1.15.

The higher-order procedure obtains derivatives of the singularity strengths
by numerical differentiation (reference 4). Normally centered differencing is
used. To eliminate a possible cause of numerical error, one-sided differences
were used for the elements on either side of the flat termination. The procedure
thus modified converged for the case K = +1.15 but gave a very poor solution.

To suppress upstream waves a vertical boundary was added at the upstream
end of the flat (xM in Figure 2). Along this boundary the downstream normal
velocity was required to be equal to the freestream velocity. In one formula-
tion the vertical extended from y = 0 to a large negative value of y. Ina
second formulation the vertical was symmetric about the x-axis and extended from
a large positive value of y to an equally large negative value. Both formu-
lations gave divergence for a vortex strength K = +1.15 for various values
of the convergence factor.

Thus all attempts to improve the method of Section 13.0 were unsuccessful.
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